

EAUX DE TRANSITION

(LAGUNES LITTORALES)

Evaluation des impacts des pressions

Risque de non atteinte du bon état écologique en 2033

Les outils, méthodes et démarches utilisés

Décembre 2023

Sommaire

1.	Pressions étudiées et niveaux d'impacts	3
2.	Méthode de classification des impacts des pressions de pollution unitaires	4
2.1.	Pollutions par les nutriments d'origine urbaine, industrielle et agricole (N, P)	4
2.2.	Pollutions diffuses par les nutriments issues des stocks sédimentaires N, P et MO	5
2.3.	Pollution par les nutriments issus des canaux (apports hors bassins-versants)	5
2.4.	Pollutions par les substances toxiques (hors pesticides) et par les pesticides	6
3.	Méthode de classification des impacts des altérations hydromorphologiques	6
3.1.	Artificialisation des échanges avec la mer	6
3.2.	Artificialisation des berges	6
3.3.	Pertes des zones humides et artificialisation de la bande des 500m	7
4.	Méthode de classification des impacts des autres pressions	7
4.1.	Conchyliculture et pêche professionnelle	7
4.2.	Pêche de loisir	7
4.3.	Espèces introduites	7
5.	Méthode d'agrégation des scores et identification du « RNABE 2033 »	8
6.	La prise en compte des effets du changement climatique :	10
Réfe	érences bibliographiques :	11
AN	NEXE 1 Détermination des classes d'impact pour les flux polluants en N/P	12
AN	NEXE 2 Grille de qualité du sédiment ex-RSL	17

1. Pressions étudiées et niveaux d'impacts

L'analyse des pressions et de leurs impacts prend en compte différentes pressions unitaires (en italiques ci-après) qui sont regroupées en 6 « **grands types de pressions** » (en gras ci-après). Chaque grand type de pressions se décompose en plusieurs catégories selon l'origine ou la nature des altérations :

- Pollutions par les nutriments urbains, industriels et canaux : azote (N) urbain, phosphore (P) urbain, N industriel, P industriel, N apports hors BV
- **Pollutions diffuses par les nutriments :** *N agricole, P agricole, N ruissellement urbain, P ruissellement urbain, stock sédimentaire,*
- Pollutions par les substances toxiques (hors pesticides)
- Pollutions par les pesticides
- Altération de l'hydromorphologie : artificialisation des échanges avec la mer, artificialisation des berges et de la bande des 500 mètres, ratio surface zones humides périphériques / surface lagune,
- Autres pressions : conchyliculture, pêche professionnelle et de loisir, espèces introduites.

Les différentes catégories issues de ces « grands types de pression » sont classées selon 4 niveaux d'impacts :

- 1 impact nul ou faible : absence de pression ou pression avec impact très localisé non mesurable et donc négligeable pas de mesure aucune action de réduction à prévoir ;
- 2 impact moyen : pression présente avec des impacts mesurables mais limités en intensité ou en étendue spatiale par rapport à la taille de la masse d'eau pas de mesure de réduction de pression à prévoir, mais une vigilance à prévoir sur l'évolution à moyen/long terme.
- 3 impact fort : pression présente avec des impacts mesurables et significatifs à l'échelle de la masse d'eau, susceptibles d'empêcher l'atteinte ou le maintien du bon état une ou des mesures sont à prévoir. Pression à réduire, réflexion à mener dans le cadre du PdM.

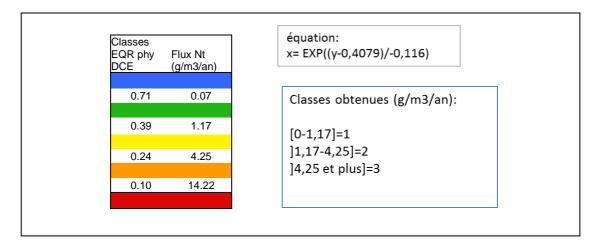
NB : En l'absence de données suffisantes, certaines masses d'eau ou certains types de pressions ont été renseignés à « dire d'expert ». C'est notamment le cas de Grazel/Mateille, Pissevache et Médart.

2. Méthode de classification des impacts des pressions de pollution unitaires

2.1. Pollutions par les nutriments d'origine urbaine, industrielle et agricole (N, P).

La première étape consiste à disposer des flux d'azote et de phosphore d'origine urbaine et industrielle pour chaque bassin versant de lagune. Il s'agit des données « ouvrages » (urbains et industriels) référencées par l'agence de l'eau.

La deuxième étape consiste à disposer des flux d'azote et de phosphore d'origine diffuse pour chaque bassin versant de lagune. Les données se basent sur les couches du RPG: Il s'agit de calculer des surfaces agricoles et imperméabilisées pour chaque bassin versant de lagune puis d'appliquer des ratios d'exportation issus de la littérature pour le calcul des flux correspondants. Cette méthode utilise le principe selon lequel, pour une année aux conditions climatiques normales, à chaque type d'occupation du sol correspond une charge relativement constante de nutriments exportés par unité de surface (voir bibliographie Meinesz, 2012.).


Enfin, les données de flux en azote (N) et en phosphore (P) sont pondérées par le volume de chaque lagune et converties en g/m³/an.

La classification des pressions polluantes est réalisée à partir de la relation des estimations des flux totaux en nutriments (Nt et Pt) avec l'EQR phytoplancton. Les classes ont été construites à partir des grilles DCE correspondantes (Tab.1) et de l'analyse des données de flux (voir annexe 1).

Les classes construites à partir de l'EQR phytoplancton permettent, in fine, de « scorer » (de 1 à 3) l'impact des sources de pressions polluantes (STEP, industrie, agricole, ruissellement urbain) pour chacune des masses d'eau.

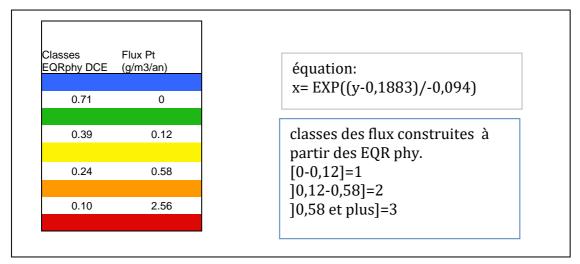

Flux d'azote

Tableau 1 Equation, et classes obtenues à partir des grilles EQR phy pour les eaux de transitions (DCE) pour l'azote.

Flux de phosphore

Tableau 2 Equation, et classes obtenues à partir des grilles EQR phy pour les eaux de transitions (DCE) pour le phosphore.

2.2. Pollutions diffuses par les nutriments issues des stocks sédimentaires N, P et MO

La pression est caractérisée par le niveau de stock sédimentaire en azote et phosphore. Le calcul des stocks est basé sur (1) la surface de la lagune et (2) la quantité d'azote ou de phosphore exprimée en g.m-2. Cette quantité (médiane des valeurs) est calculée en utilisant les concentrations mesurées en chaque point, la hauteur d'intégration de l'échantillon (5cm) et la densité estimée (Ouisse, 2020). L'impact est évalué à partir de la grille de l'ex-RSL (Réseau de Suivi Lagunaire) de la qualité du sédiment vis-à-vis de l'eutrophisation (Annexe 2. Ifremer, Créocean, UM II, 2000)

Les grilles étant construites selon 5 classes de qualité (1, 2, 3, 4 et 5), certaines classes sont regroupées pour correspondre aux 3 scores (1, 2 et 3). Les classes 4 et 5 correspondent au score d'impact 3 (impact significatif) la classe 3 au score d'impact 2 (mesurable mais non significatif), les classes 2 et 1 au score d'impact 1 (impact non mesurable). (Voir annexe 2).

Pour l'évaluation de l'impact des pressions polluantes venant du stock sédimentaire, seuls les scores d'impact du phosphore sont utilisés compte tenu du relargage plus conséquent de cet élément dans la colonne d'eau.

2.3. Pollution par les nutriments issus des canaux (apports hors bassins-versants)

Les pressions de pollution par les nutriments issus des apports hors bassins-versants (notamment canaux de navigation, canaux agricoles, etc.) sont évaluées à « dire d'experts ». Les scores d'impacts de cette pollution correspondent aux scores d'évaluation de la pression.

2.4. Pollutions par les substances toxiques (hors pesticides) et par les pesticides

Les scores d'impacts sont attribués en priorité à partir des suivis « milieux » (réseaux DCE et OBSLAG pesticides) et à défaut à partir des scores « substances » et « pesticides » des cours d'eau affluents des masses d'eau lagunaires.

1/ Si les données « milieux » sont déclassantes alors un impact 3 est attribué quel que soit le score obtenu sur les cours d'eau affluents.

2/ Une moyenne des scores « pesticides » d'une part et « substances hors pesticides » d'autre part, établis sur les cours d'eau affluents, est réalisée. Si au moins un cours d'eau affluent direct de la lagune est en impact « 3 » alors la moyenne est arrondie à l'entier supérieur. Dans les autres cas elle est arrondie à l'entier inférieur.

3/ En l'absence de données et/ou de cours d'eau affluents, le score est établi à dire d'expert.

3. Méthode de classification des impacts des altérations hydromorphologiques

3.1. Artificialisation des échanges avec la mer

Artificialisation des Graus

La classification est faite selon le ou les types de graus de chaque lagune ; l'objectif étant de qualifier l'impact de l'artificialisation du grau sur l'état écologique de la lagune. Lorsque plusieurs types de graus sont présents, c'est le type de grau le plus déclassant qui est retenu pour la classification (ex : présence d'un grau naturel et d'un grau fortement artificialisé, on considérera uniquement la présence du grau fortement artificialisé).

- Pas de grau = sans objet (SO)
- Grau totalement naturel permanent = 0
- Grau totalement naturel temporaire = 0
- Grau permanent pérennisé par des aménagements légers = 1
- Grau permanent artificialisé = 2
- Grau permanent artificialisé et chenalisé = 3
- Grau permanent avec contrôle hydraulique = 3 (ou « 2 » sous réserve d'une bonne gestion du grau, à vérifier auprès des experts).

3.2. Artificialisation des berges

Ce descripteur permet de renseigner l'artificialisation de l'ensemble du linéaire de berge. Les données et classes utilisées sont issues d'Aquascop, 2014¹.

[90; 100 %] de berges naturelles = 1 [66 %; 90 %[de berges naturelles = 2 < 66 % de berges naturelles = 3

¹ Cette étude a permis de caractériser une dizaine de descripteurs hydromorphologiques pertinents pour les lagunes et d'étudier les liens entre la biologie des lagunes et ces descripteurs physiques. Les classes proposées sont issues de ces analyses exploratoires et notamment de l'étude de l'ensemble du jeu de données qui permet la comparaison entre lagunes. Elles restent en partie arbitraires et ajustées à dire d'expert.

3.3. Pertes des zones humides et artificialisation de la bande des 500m

Deux descripteurs complémentaires ont été sélectionnés pour renseigner les atteintes hydromorphologiques à proximité directe de la lagune :

- la proportion de surfaces artificialisées situées dans une « couronne » de 500 mètres de large autour de la lagune,
- la surface de zones humides (ZH) comparée à la surface de la lagune (ratio entre les deux valeurs).

Les données et classes utilisées sont issues d'Aquascop, 2014¹.

Artificialisation de la bande des 500 mètres :

```
[0; 10 \%] = 1
]10; 20] = 2
>20 = 3
```

Ratio surface ZH/ surface lagune :

```
> 1 = 1
[0.5; 1] =2
<0.5= 3
```

4. Méthode de classification des impacts des autres pressions

4.1. Conchyliculture et pêche professionnelle

Des tests ont été réalisés à partir des données brutes. In fine, il a été acté que ces pressions ne suffisent pas à elles seules pour déclasser les lagunes concernées par ces activités. Aussi, le score d'impact est au maximum égal à 1 en présence d'une activité de conchyliculture ou de pêche professionnelle (ou les deux).

4.2. Pêche de loisir

Les scores relatifs à cette pression de pêche récréative correspondent à la réglementation appliquée sur les lagunes.

```
0 = non autorisé1 = pêche autorisée
```

Les lagunes sont donc classées selon la présence ou l'absence de pêche de loisir.

4.3. Espèces introduites

Les scores attribués à chaque lagune sont issus d'un questionnaire soumis aux gestionnaires et à dire d'expert.

5. Méthode d'agrégation des scores et identification du « RNABE 2033 »

Rappel des grands types de pressions étudiées sur les lagunes (en gras, avec les pressions unitaires en italiques) :

- Pollutions par les nutriments urbains, industriels et canaux : azote (N) urbain, phosphore (P) urbain, N industriel, P industriel, N apports hors BV.
- **Pollutions diffuses par les nutriments :** *N agricole, P agricole, N ruissellement urbain, P ruissellement urbain, stock sédimentaire,*
- Pollutions par les substances toxiques (hors pesticides)
- Pollutions par les pesticides
- Altération de l'hydromorphologie : artificialisation des échanges avec la mer, artificialisation des berges et de la bande des 500 mètres, ratio surface zones humides périphériques / surface lagune,
- Autres pressions : conchyliculture, pêche professionnelle et de loisir, espèces introduites.

Chaque grand type de pressions rassemble plusieurs pressions unitaires selon une logique de regroupement fondée sur l'origine ou la nature des altérations. Par exemple, pour les pollutions par les nutriments urbains, industriels et canaux on aura les apports en azote issus des STEP, les apports en azote issus des industries, etc. Chacune de ces pressions unitaires est affectée d'un niveau d'impact de 1 à 3.

L'identification du RNABE pour chaque masse d'eau se fait en 2 temps :

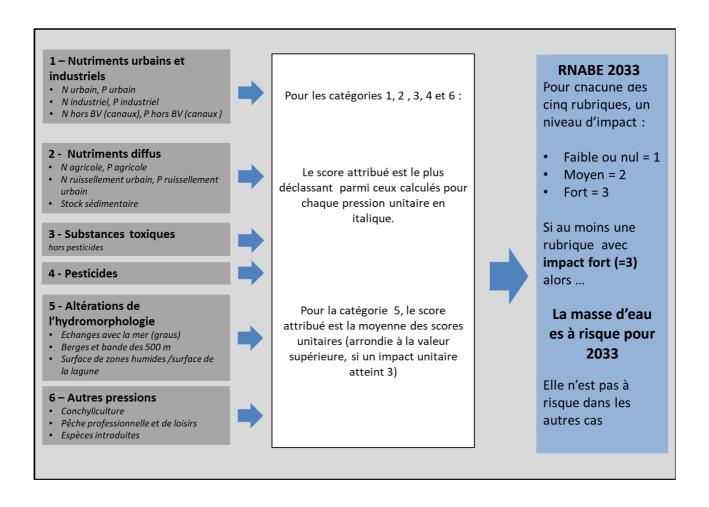
1/ Passage des catégories d'impact de chaque pression unitaire à un niveau d'impact par grands types de pressions

2/ Evaluation du RNABE par masse d'eau.

1/ Passage des catégories d'impact à un niveau d'impact par grands types de pressions

- ➤ Si au moins une des catégories d'impact des pressions unitaires d'un grand type de pression est en niveau 3 => le grand type se retrouve en niveau 3
- ➤ Si les catégories d'impact des pressions unitaires d'un grand type de pression sont en niveau 2 ou moins => le grand type se retrouve en niveau 2
- ➤ Si les catégories d'impact des pressions unitaires d'un grand type de pression sont en niveau 0 ou 1 => le grand type se retrouve en niveau 1

Exception: Concernant les modifications hydromorphologiques, les règles ci-dessus ne s'appliquent pas. Une moyenne des scores obtenus sur les différentes catégories d'impact qui composent ce grand type de pression est réalisée. La moyenne est arrondie à l'entier le plus proche. En cas de « demi » (1,5 ou 2,5), le score est basculé à l'entier supérieur si une catégorie d'impact est en niveau 3 et à l'entier inférieur dans le cas contraire. En effet, le lien entre les dégradations morphologiques et la qualité biologique des lagunes a fait l'objet d'études mais reste à approfondir. Ainsi, utiliser la moyenne des scores permet de ne pas déclasser des ME uniquement sur ce critère « hydromorphologie ».


2/ Passage d'un niveau d'impact par grands types de pressions au RNABE par masse d'eau.

Si au moins un grand type de pression est en niveau 3 la masse d'eau est en « RNABE 2033 ». Elle n'est pas à risque dans les autres cas.

Les pressions à l'origine du risque sont celles qui ont contribué au RNABE

De plus, si la masse d'eau est à risque (impact 3) vis-à-vis des pollutions (nutriments et/ou micro-polluants), on retiendra l'hydromorphologie comme pression à l'origine du risque c'est à dire avec un impact forcé à 3 lorsque celle-ci est initialement évaluée en niveau 2. En effet, si la restauration des lagunes passe bien d'abord par la réduction des apports polluants, le « levier » hydromorphologique présente un double bénéfice en agissant sur la qualité de l'eau et la qualité de l'habitat. Ainsi, ce point méthodologique d'évaluation des pressions à l'origine du risque est en cohérence avec la note du secrétariat technique SDAGE « L'hydromorphologie des lagunes dans le contexte de la DCE ».

Le schéma ci-après résume la démarche d'évaluation du RNABE 2033.

6. La prise en compte des effets du changement climatique :

Les effets actuels du changement climatique sont pris en compte au travers de la mise à jour des données de pressions : l'évolution de ces pressions intègre déjà des modifications des usages pour s'adapter aux conséquences déjà bien concrètes du changement climatique. Ils seront aussi partiellement pris en compte par un examen de l'actualité des débits d'étiage utilisés dans la démarche pour, le cas échéant, évaluer les impacts actuels des pressions en tenant compte de l'éventuelle diminution de ces débits de référence.

Une réflexion générale sur les effets du changement climatique sur les usages de l'eau et sur les milieux aquatiques doit être conduite dans l'état des lieux du bassin de 2025. Elle intègrera l'évaluation du RNABE 2033 mais ne peut s'y réduire. Cette réflexion plus large permettra d'ajuster le programme de mesures 2028-2033 en identifiant les mesures d'adaptation nécessaires à une anticipation des problèmes de quantité et de qualité des milieux aquatiques, pour envisager la réponse des usages à envisager pour respecter les objectifs d'état des milieux.

Un chapitre spécifique sera produit dans l'EDL afin d'alerter les représentants du CB et acteurs locaux sur les tendances d'évolution de l'impact des pressions (même à pression constante) et donc de la dégradation probable de l'état des milieux à terme.

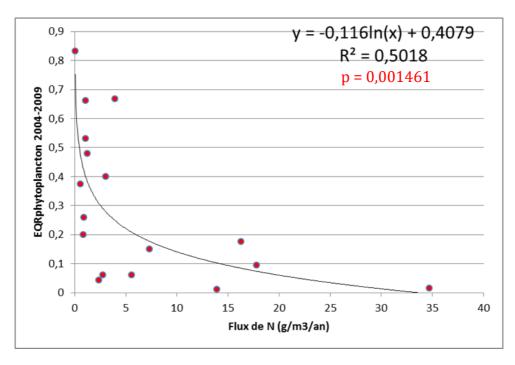
Références bibliographiques :

- Aquascop, 2014. Réalisation d'une ou deux campagnes d'acquisition et d'interprétation de données de descripteurs hydromorphologiques des lagunes littorales des bassins Rhône Méditerranée Corse. Agence de l'eau Rhône Méditerranée Corse.
- Asconit Consultants, 2009. Caractérisation et évaluation des paramètres hydromorphologiques des lagunes du bassin Rhône-Méditerranée et Corse dans le cadre de la DCE. Agence de l'eau Rhône Méditerranée Corse. 242 p.
- Battut J, 2010. Définition d'une base de données "Pressions" sur les lagunes Méditerranéennes et relation avec les indicateurs de qualité de la Directive Cadre sur l'Eau. Ifremer.
- Derolez V, Leurion A & Fiandrino A, 2012. Estimation du degré d'échange avec la mer pour les lagunes du bassin Rhône Méditerranée & Corse (DCE). Ifremer.
- Ouisse, V., A. Fiandrino, R. De Wit, A. Giraud, & N. Malet, 2014a. Devenir du phosphore et de l'azote dans un contexte de restauration des milieux lagunaires méditerranéens DEPART.
- Meinesz C, 2012. Base de données "pressions" des lagunes méditerranéennes. Analyse des relations pressions-éléments de qualité biologique de la Directive Cadre sur l'Eau. Ifremer.

Secrétariat technique du SDAGE, 2016. L'hydromorphologie des lagunes dans le contexte de la Directive Cadre sur l'eau – Bassin Rhône Méditerranée. 34p.

ANNEXE 1 Détermination des classes d'impact pour les flux polluants en N/P

Tableau 5. Grille de diagnostic DCE pour EQRphy en milieu lagunaire (EQR : « Ecological Quality Ratio »).

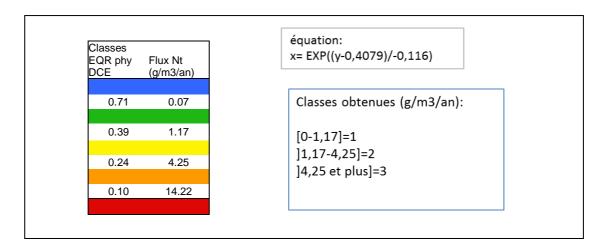

	Très bien		Bien		Moyen		Médiocre		Mauvais
EQRphy T10		0,71		0,39		0,24		0,10	

Le travail réalisé s'appuie en partie sur les travaux de Meinesz, 2012 dans le cadre de la base de données « pressions » des lagunes méditerranéennes et l'analyse des relations pressions-éléments de qualité biologique de la Directive Cadre sur l'Eau.

Pour la détermination des classes d'impact sont exclues les données de :

- Canet, Gruissan et Ponant. Canet et Ponant sont des lagunes de petites tailles et de faibles volumes soumises à des apports de bassins versants très étendus. Le coefficient d'abattement n'est pas pris en compte, il est possible que les apports pour ces deux lagunes soient trop surévalués. L'étang de Gruissan ne serait quant à lui, soumis qu'à une partie des apports du bassin versant délimité dans l'étude. Ainsi, là aussi les apports seraient trop élevés (Meinesz, 2012). Ces 3 lagunes sont donc supprimées du jeu de données pour la suite des analyses.
- Berre, Grand Bagnas, Campignol et Vendres car, les lagunes soumises à des apports hors bassins versants conséquents et qui sont classées en catégorie 3 (« dire d'expert », lors des précédentes réunions), sont également retirées du jeu de données.

AZOTE


Figure 1. EQR phytoplancton (2004-2009) en fonction des estimations de l'apport en azote aux lagunes méditerranéennes (g/m³/an) (hors celles soumises à des apports hors BV conséquents : Berre, Grand Bagnas, Campignol et Vendres) ainsi que Canet, Gruissan et Ponant.

La relation obtenue est significative (pvalue =0,001461) et 50 % de la variance est expliquée par le jeu de données (Fig.1).

Cette relation est utilisée pour calculer des classes d'impacts à partir des grilles de diagnostic DCE de l'EQR phytoplancton.

L'équation de la droite logarithmique obtenue (Fig.1) permet de calculer les flux totaux de Nt (g/m³/an) correspondant aux différentes classes de l'EQR phytoplancton et de caler ainsi les classes d'impacts de pressions polluantes en azote (Tab.2).

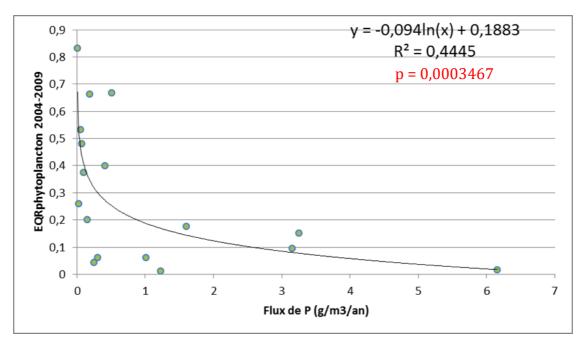
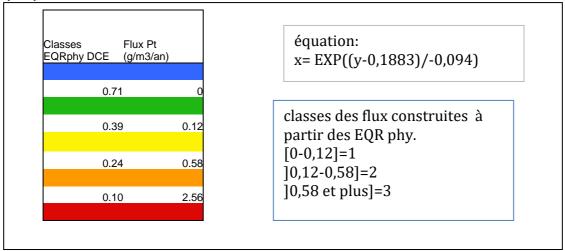

Tableau 6 Equation, et classes obtenues à partir des grilles EQR phy pour les eaux de transitions (DCE) pour l'azote.

Tableau 7. Flux totaux en Nt (g/m3/an), EQRphy et scores obtenus à partir de la relation établie pour chacune des lagunes.

	Flux total N	EQRphy2010- 2015	scores d'impacts Nt à partir des EQRphy
Masse d'eau			
Canet	24,926	0,03	3
Salses-Leucate	0,851	0,77	1
La Palme	3,067	1,00	2
Bages - Sigean	0,912	0,62	1
Ayrolle	0,002	0,91	1
Campignol	19,436	0,29	3
Gruissan	13,525	0,76	3
Vendres	2,257	0,03	2
Grand Bagnas	1,770	0,06	2
Etang de Thau	0,101	0,40	1
Etang de l'Or	2,975	0,04	2
Etangs Palavasiens Est	11,653	0,07	3
Etangs Palavasiens Ouest	5,969	0,30	3
Etang du Ponant	34,842	0,09	3
Petite Camargue Médart	0,020	0,20	1
Petite Camargue Marette	0,252	0,13	1
Petite Camargue Scamandre- Charnier	0,006	0,03	1
Vaccarès	0,036	0,37	1
La Palissade	0,000	0,16	0
Etang de Berre	0,488	0,35	1
Vaïne	1,056	0,33	1
Bolmon	6,621	0,01	3
Biguglia	0,693	0,28	1
Diana	0,045	0,72	1
Urbino	0,030	0,65	1
Palo	0,836	0,22	1

PHOSPHORE


Figure 2. EQR phytoplancton en fonction des estimations des apports en phosphore aux lagunes (hors celles soumises à des apports hors BV conséquents : Berre, Grand Bagnas, Campignol et Vendres) ainsi que Canet, Ponant et Gruissan.

La relation est significative (pvalue =0,0003467), 44 % de la variance est expliquée par le jeu de données (Fig.6).

La relation obtenue est utilisée pour calculer des classes d'impacts à partir des grilles de diagnostic DCE de l'EQR phytoplancton (2004-2009) (Tab.4 & 5).

L'équation de la droite logarithmique obtenue (Fig.2) permet de calculer les flux totaux de Pt (g/m³/an) correspondant aux différentes classes de l'EQR phytoplancton et de caler ainsi les classes d'impacts de pressions polluantes en phosphore (Tab.5).

Tableau 8 Equation, et classes obtenues à partir des grilles EQR phy pour les eaux de transitions (DCE) pour le phosphore.

Tableau 9. Flux de Pt (g/m3/an), EQRphy et scores obtenus à partir de la relation obtenue fig.2

	Flux total P	EQRphy2010- 2015	Scores d'impacts Pt à partir des EQRphy
Masse d'eau			
Canet	3,990	0,03	3
Salses-Leucate	0,154	0,77	2
La Palme	0,557	1,00	2
Bages - Sigean	0,129	0,62	2
Ayrolle	0,000	0,91	1
Campignol	1,614	0,29	3
Gruissan	1,123	0,76	3
Vendres	0,476	0,03	2
Grand Bagnas	0,223	0,06	2
Etang de Thau	0,016	0,40	1
Etang de l'Or	0,371	0,04	2
Etangs Palavasiens Est	2,484	0,07	3
Etangs Palavasiens Ouest	1,272	0,30	3
Etang du Ponant	4,973	0,09	3
Petite Camargue Médart	0,006	0,20	1
Petite Camargue Marette	0,011	0,13	1
Petite Camargue Scamandre- Charnier	0,000	0,03	1
Vaccarès	0,001	0,37	1
La Palissade	0,000	0,16	0
Etang de Berre	0,099	0,35	1
Vaïne	0,168	0,33	2
Bolmon	0,870	0,01	3
Biguglia	0,089	0,28	1
Diana	0,003	0,72	1
Urbino	0,001	0,65	1
Palo	0,082	0,22	1

Les scores d'impacts de pressions polluantes en azote et phosphore obtenus pour chaque masse d'eau permettent d'apprécier de manière globale l'impact des flux totaux en azote et en phosphore issus des bassins versants sur chaque masse d'eau (mais cela ne permet pas de distinguer les sources). Ces scores ne sont utilisés que comme une valeur guide exprimant un niveau d'impact global par rapport à l'Azote et au Phosphore.

ANNEXE 2 Grille de qualité du sédiment ex-RSL

Grille de qualité du sédiment ex-RSL (Ifremer, Créocean, UM II, 2000)

Tableau 14.3: Grille de diagnostic pour les sédiments.

VARIABLE		Très bon		Bon		Moyen		Médiocre		Mauvais
МО	%		3,5		5,0		7,5		10,0	
NT	g/kg PS		1,0		2,0		3,0		4,0	
PT	mg/kg PS		400		500		600		700	

Données brutes des stocks sédimentaires en Nt, Pt et MO et scores d'impacts obtenus à partir de la grille de qualité ex-RSL vis-à-vis de l'eutrophisation.

Water Body Name	ANNEE	Stock sédimentaire Nt (g.m-2)	Stock sédimentaire Pt (g.m-2)	Stock sédimentaire MO (g.m-2)	Qualité Pt	Score Pt
Bages-Sigean	2015	91	25	3541	3	2
Berre	2011	71	15	3854	2	1
Biguglia	2013	215	19	3634	4	3
Bolmon	2009	13	28	3677	5	3
Campignol	2010	103	25	3388	3	2
Ayrolle	2010	37	14	1861	1	1
Canet	2012	80	31	2142	5	3
Diane	2013	114	19	2029	3	2
Grand Bagnas	2002	113	34	3021	5	3
Gruissan	2010	116	16	4008	1	1
La Palissade	2009		26	1067	1	1
La Palme	2013	35	16	1454	1	1
Leucate	2009	56	10	2046	1	1
Marette	2007	175	20	3936	4	3
Etang de l'Or	2010	143	18	3852	5	3
Palavasiens Est (Arnel, Prévost, Méjean, Grec)	2012	119	33	3883	5	3
Palavasiens Ouest (Vic, Ingril, Pierre Blanche)	2011	124	18	3965	4	3
Palo	2013	235	15	4238	4	3
Ponant	2002	91	30	4685	4	3
Thau	2014	176	21	4466	5	3
Urbino	2013	186	17	3055	3	2
Vaccares	2002- 2003	65	29	1248	3	2
Vaine	2009	97	14	4036	2	1
Vendres	2002	157	28	4764	5	3
Scamandre- Charnier	2009	20	24	4066	5	3